Производим расчёт освещённости помещения
Содержание:
- С чего начать расчет наружного освещения улицы?
- Расчет освещенности
- Как рассчитать количество светильников на комнату?
- Что нужно учесть при вычислении необходимой яркости ламп?
- Расчет производственного освещения с помощью dialux
- Семь раз подумай перед просчётом освещения
- Немного об экономике
- Расчет освещенности помещения
- Характеристики источников света
- Дело за малым – устанавливаем фонари!
- Задача №1 — расчёт мощности светильника
С чего начать расчет наружного освещения улицы?
Комфорт и безопасность – понятия хоть и относительные, но имеют определенные показатели. Не стоит гадать, какой уровень освещенности потребуется для улицы. Достаточно обратиться к нормативным документам.
Согласно ГОСТ Р 55706-2013 объекты улично-дорожной сети делятся на классы, каждый из которых требует определенную яркость искусственного света. Показатель измеряется в канделах на квадратный метр (кд/м.кв). Кандел является единицей силы света.
Например:
·Класс А (1,2-2,0 кд/м.кв) включает дороги с интенсивным движением транспорта (магистрали, федеральные трассы).
·Класс Б (1-1,2) объединяет пути городского и районного предназначения.
·Класс В (0,4-0,8) состоит из дорог в жилой застройке в центре города и за его пределами, а также промышленных зонах.
·Класс П (0,1-0,3) включает пешеходные улицы, аллеи, тротуары, площади перед зданиями общественного пользования.
Найти в данном ГОСТе можно и информацию относительно средней освещенности объектов, измеряемой в Люксах (лк).
Значения для наиболее востребованных объектов:
·Площадь перед входом в развлекательное здание – 20,
·Пешеходные улицы и детские площадки – 10,
·Вход в парк или на стадион – 6,
·Тротуары – 4,
·Центральные и второстепенные аллеи парков – 2.
Еще один документ, который поможет рассчитать уличное освещение – это СНиП 23-05-95. Здесь указаны значения горизонтальной освещенности (лк) многих объектов городской инфраструктуры:
·Мостики для пешеходов – 10,
·Спортивные площадки – 10,
·Подходы к различным площадкам – 4,
·Площадь торгового центра – 4.
СНиП 23-05-95 также полезен для расчета наружной освещенности фасадов и витрин с учетом требований к яркости фасада и степенью отражения в зависимости от материала отделки.
Расчет освещенности
Для расчёта необходимого количества осветительных приборов существует две основные формулы – простая и сложная, дающая более точный расчёт. На практике достаточно простой формулы. Она не требует серьёзных знаний и вполне решаема даже без калькулятора.
Шаг первый – рассчитать величину светового потока, требуемого для помещения (измеряется в Люменах).
Для этого стоит прибегнуть к простой формуле А * B * C, где:
- Норма освещённости выбранного объекта.
- Площадь объекта.
- Коэффициент высоты потолков. При высоте потолков от 2.5 до 2.7 метров он равен 1, от 2.7 до 3 метров – 1.2, от 3 до 3.5 метров – 1.5 и от 3.5 до 4.5 метров – равен 2.
Вторым шагом будет расчёт нужного количества ламп и их мощности. Для этого необходимо разделить полученное в первых расчётах число на величину светового потока указанную на лампах в подобранных осветительных приборах
При этом важно помнить, что чем больше используется приборов, тем равномернее освещение
Пример расчёта 1
Дано: жилая комната площадью 20 квадратных метров с потолком высотой 2.7 метра и осветительными приборами, оснащёнными лампочками накаливания мощностью 60 Вт.
Сначала рассчитываем необходимый световой поток для данного помещения:
150 * 20 * 1 = 3000 Люмен.
Затем узнаем необходимое количество ламп для нормальной освещённости комнаты. Для этого сначала надо уточнить световой поток 60 Вт лампочки накаливания. В среднем они выдают от 600 до 800 Люмен.
Возьмём среднее значение в 700 Люмен:
3000 : 700 = 4.28571
Округляем в большую сторону – до 5 – это и будет необходимым количеством осветительных приборов, оснащённых одной лампочкой. Мощностью 60 Вт. Но стоит иметь ввиду, что большее количество менее мощных ламп позволяет получить более равномерную засветку.
Более сложная, но с этим и более точная формула требует перед началом расчётов собрать некоторое количество данных:
- Первым делом надо измерить комнату, для которой рассчитывается освещение. Необходимы такие параметры, как высота, длина и ширина комнаты.
- Затем по нормативам необходимо определить коэффициент отражения стен, потолка, и пола.
- Следующим шагом будет нахождение коэффициента применения. Для этого рассчитывается расстояние от рабочей поверхности до светильника. Также на этом этапе необходимо определиться с типом и мощностью установленной в нём лампочки.
- По таблице из СНиП определяем норму освещённости помещения.
Рассчитываем площадь помещения (S):
S = a * b
где:
a – длина помещения;
b – ширина помещения.
Рассчитываем индекс помещения (Ф):
Ф = S / (( h1 – h2 ) * ( a + b ))
где:
h1 – высота от пола до потолка;
h2 – высота от рабочего места до потолка.
Рассчитываем количество осветительных приборов (N):
N = ( E * S * 100 * Кз ) / ( У * p * Fi )
где:
E – освещённость помещения;
S – площадь помещения;
Кз – коэффициент запаса;
У – коэффициент использования ламп;
p – количество ламп;
Fi – поток света одной лампы.
Необходимый уровень освещения в разных комнатах
Пример расчёта 2
Дано: жилая комната размером 9 на 6 метров с потолком высотой 3.2 метра. Осветительными приборами были выбраны четыре люминесцентные лампы по 18 Вт каждая. Расстояние от рабочей поверхности до пола 0.8 метра, коэффициент запаса – 1.25, коэффициент отражения пола равен 10, стен – 30, потолка – 50.
Производим расчёт площади:
S = 9 * 6 = 54 кв. м
Далее узнаём индекс помещения:
Ф = 54 / (( 3.2 – 0.8 ) * ( 6 + 9 ) = 1.5
Коэффициент использования ламп в жилых комнатах – У – равен 51.
Производим дальнейшие, окончательные расчёты:
N = ( 300 * 54 * 100 * 1.25 ) / ( 51 * 4 * 1150 ) = 8.63
Всегда округляем в большее число – получаем 9. Это и есть необходимое для правильной организации освещения количество ламп.
Как рассчитать количество светильников на комнату?
Итак, мы знаем высоту потолка, допустим, 3.2 метра, в кабинете у нас стоит стол высотой 80 сантиметров. Как определить, сколько потребуется источников света? Здесь уже не обойтись простым методом, а потому воспользуемся более сложным вариантом, для которого потребуется ряд формул. А оперировать придется помимо Ватт такими единицами измерения, как люкс и люмен. Прежде всего, высчитываем площадь комнаты по стандартному пути S = a .b, где a и b – длины сопредельных сторон помещения. Допустим, требуемое значение будет 12 м2.
Далее нужно узнать коэффициент использования осветительного прибора, для чего нам понадобится индекс помещения и коэффициенты отражения различных поверхностей. Формула для получения первого показателя используется следующая: φ=S/((h1 — h2) ∙ (a + b)). Здесь добавляются две новых переменных, h1 и h2, представляющие собой высоту от потолка до пола и от потолка до освещаемой рабочей поверхности стола. Что же касается коэффициентов, то они зависят от того, из какого материала выполнена поверхность, какую имеет фактуру и текстуру. Подходящие значения можно выбрать из таблицы.
Характер отражающей поверхности |
Коэффициент отражения r, % |
Поверхности из материалов с высокой степенью отражаемости; белый мрамор |
80 |
Побеленный потолок; побеленные стены с окнами, закрытыми белыми шторами; белая фаянсовая плитка |
70 |
Обои белые, кремовые, светло-желтые |
65 — 85 |
Побеленные стены при незанавешенных окнах; побеленный потолок в сырых помещениях; чистый бетонный и светлый деревянный потолок; сосновая древесина светлая |
50 |
Дерево фанера |
38 |
Дерево дуб светлый |
33 |
Бетонный потолок в грязных помещениях; деревянный потолок; бетонные стены с окнами; стены, оклеенные светлыми обоями; серые поверхности |
30 |
Обои темные |
25 |
Стены и потолки в помещениях с большим количеством темной пыли; сплошное остекление без штор; красный кирпич не оштукатуренный; стены с темными обоями |
10 |
Красный кирпич |
8 — 10 |
Оконное стекло (толщина 1-2 мм) |
8 |
Обычно принято брать коэффициенты отражения для потолка, стен и пола (преобразуются они в десятичные дроби, то есть значение 50 соответствует 0.5). По ним и результату вычисления индекса помещения не сложно найти еще одну переменную – индекс использования освещения U, который нам понадобится для дальнейших расчетов. Очередной коэффициент определяется по таблицам, которые существенно различаются в зависимости от использования той или иной марки лампы. Возьмем, к примеру, светильники с типом КСС М, то есть широким спектром освещения в пределах 180 градусов излучения максимальной яркости. Это как раз обычная бытовая лампочка.
Тип КСС |
Значение U, % |
|||||||||||
При rпотолка = 0.7, rстен = 0.5, rпола = 0.3 и φ равном: |
При rпотолка = 0.7, rстен = 0.5, rпола = 0.1 и φ равном: |
|||||||||||
0.6 | 0.8 | 1.25 | 2 | 3 | 5 | 0.6 | 0.8 | 1.25 | 2 | 3 | 5 | |
М | 35 | 50 | 61 | 73 | 83 | 95 | 34 | 47 | 56 | 66 | 75 | 86 |
При rпотолка = 0.7, rстен = 0.3, rпола = 0.1 и φ равном: |
При rпотолка = 0.5, rстен = 0.5, rпола = 0.3 и φ равном: |
|||||||||||
0.6 | 0.8 | 1.25 | 2 | 3 | 5 | 0.6 | 0.8 | 1.25 | 2 | 3 | 5 | |
М | 26 | 36 | 46 | 56 | 67 | 80 | 32 | 45 | 55 | 67 | 74 | 84 |
При rпотолка = 0.5, rстен = 0.5, rпола = 0.1 и φ равном: |
При rпотолка = 0.5, rстен = 0.3, rпола = 0.1 и φ равном: |
|||||||||||
0.6 | 0.8 | 1.25 | 2 | 3 | 5 | 0.6 | 0.8 | 1.25 | 2 | 3 | 5 | |
М | 31 | 43 | 53 | 63 | 72 | 80 | 23 | 36 | 45 | 56 | 65 | 75 |
При rпотолка = 0.3, rстен = rпола = 0.1 и φ равном: |
При rпотолка = rстен = rпола = 0.1 и φ равном: |
|||||||||||
0.6 | 0.8 | 1.25 | 2 | 3 | 5 | 0.6 | 0.8 | 1.25 | 2 | 3 | 5 | |
М | 17 | 29 | 38 | 46 | 58 | 67 | 16 | 28 | 38 | 45 | 55 | 65 |
Узнав значение U, затем подставляем его в формулу N=(E∙S∙100∙Kз)/(U∙n∙Фл). В числителе у нас появились новые переменные: Е – минимальная освещенность, выражающаяся в люксах (лк), и Кз – коэффициент запаса, учитываемый исходя из старения лампочек в процессе эксплуатации. Последний является, по сути, константой, которую можно найти в СНиП, но в среднем этот показатель соответствует 1.5 для люминесцентных ламп и 1.3 для ламп накаливания. В знаменателе нам неизвестна n – количество источников света в электроприборе и Фл – излучение одной лампы, выражающееся в люмах (лм). Значение минимальной освещенности рассчитывается по формуле Е = Фл/S. Используя все параметры, приведенные в таблицах, а также результаты второстепенных формул, найти количество светильников N на комнату не составит труда.
Что нужно учесть при вычислении необходимой яркости ламп?
Итак, мы рассмотрели наиболее простой метод вычисления возможной мощности иллюминации в помещении. Но, опять же, это суммарная мощность. Можно вкрутить 2 лампочки по 100 Вт или 4 лампочки по 50, распределив их более широким фронтом. Что изменится? Количество источников света. Логично, что разместив двухрожковую и очень яркую люстру в центре комнаты, сидя к ней спиной за столом, вы будете видеть свою тень на рабочей поверхности. И несложно догадаться, что размещение 4 ламп с суммарной мощностью, идентичной предыдущему варианту по разным зонам помещения, включая и рабочую, даст куда больший эффект.
До того, как рассчитать количество светильников, следует учесть высоту потолка и рабочей поверхности. Выше приведена таблица норм яркости освещения комнаты для потолков до 3 метров. А если они гораздо выше? Тогда те же показатели следует умножить на 1.5, а после 4 метров – на 2. В идеале следовало бы учитывать при вычислениях и естественные источники освещения, то есть окна, но пересчитать количество проникающих через них люмен вряд ли представляется возможным. А вот для ламп это вполне осуществимо, если воспользоваться таблицей.
Источник |
Мощность (Ватт) |
Световой поток (люмен) (Фл) |
Средний срок службы (часы) |
Лампа накаливания теплый белый свет |
15 25 40 60 75 100 |
90 230 430 730 960 1380 |
1000 |
Галогеновая лампа 12 В теплый белый свет |
20 35 50 75 |
340 670 1040 1280 |
2000 — 4000 |
Галогеновая лампа 220 В теплый белый свет |
100 150 200 300 400 500 |
1650 2600 3200 5000 6700 9500 |
2000 — 4000 |
Люминисцентная лампа теплый белый свет холодный белый свет нейтральный белый свет |
4 6 8 13 15 16 18 36 58 |
120 240 450 950 950 1250 1350 3350 5200 |
7500 — 8500 |
Ртутная лампа теплый белый свет нейтральный белый свет |
50 80 125 250 400 |
2000 4000 6500 14000 24000 |
8000 — 12000 |
Натриевая лампа желтый свет |
35 50 70 100 150 250 400 |
2000 3500 5600 9500 15500 30000 51500 |
8000 — 10000 |
Металлогалогеновая лампа теплый белый свет холодный белый свет |
39 75 150 |
3000 5100 12500 |
6000 — 9000 |
Поэтому обратим внимание не на внешние факторы, а на внутренние, то есть на свет ламп и его взаимодействие с отделкой. Матовое покрытие мебели и стен имеет свойство поглощать световые лучи, а глянцевое, как известно, отражает их
То же самое и с цветами, более темные требуют яркого освещения и наоборот. Удельную мощность из приведенной ранее формулы нужно брать, исходя из всех перечисленных факторов, и в этом поможет следующая таблица.
Помещение |
Средняя мощность |
Прямое освещение |
Смешанное освещение |
Отраженное освещение |
|||||||||
Отделка помещения |
|||||||||||||
светлая |
темная |
светлая |
темная |
светлая |
темная |
||||||||
А |
Б |
А |
Б |
А |
Б |
А |
Б |
А |
Б |
А |
Б |
||
Для ламп накаливания |
|||||||||||||
Прихожая |
60 |
10 |
16 |
12 |
20 |
11 |
20 |
14 |
24 |
12 |
24 |
10 |
32 |
Кабинет, гостиная |
250 |
42 |
70 |
50 |
83 |
42 |
83 |
60 |
100 |
50 |
100 |
70 |
140 |
Спальня |
120 |
20 |
32 |
24 |
40 |
20 |
40 |
28 |
40 |
20 |
48 |
32 |
64 |
Ванная, кухня |
250 |
42 |
70 |
50 |
83 |
42 |
83 |
60 |
100 |
50 |
100 |
70 |
140 |
Кладовая |
60 |
10 |
16 |
12 |
20 |
11 |
20 |
14 |
24 |
12 |
24 |
16 |
32 |
Подвал, чердак |
60 |
10 |
16 |
12 |
20 |
11 |
90 |
14 |
24 |
12 |
24 |
16 |
32 |
Для люминесцентных ламп |
|||||||||||||
Прихожая, лестница |
60 |
3 |
5 |
4 |
6 |
3.5 |
6 |
4.5 |
7.5 |
4 |
7.5 |
5 |
10 |
Ванная, кухня, гостиная |
250 |
13 |
21 |
17 |
25 |
15 |
25 |
19 |
31 |
17 |
31 |
21 |
42 |
Кладовая, подвал, чердак |
60 |
3 |
5 |
4 |
6 |
3.5 |
6 |
4.5 |
7.5 |
4 |
7.5 |
5 |
10 |
https://youtube.com/watch?v=AIT4Rqp4TKs%2520
Расчет производственного освещения с помощью dialux
Конечно же Расчет производственного освещения с помощью Dialux будет самым точным и наиболее правильным решением.
В чем его преимущество:
- Вы можете выбрать нужную вам оптическую систему светильника и сравнить какой угол расхождения луча от светильника наиболее эффективнее осветит одно и то же помещение.
- На основании данных о оптике светильника вы сможете выбрать светильник способный в конкретных условиях создать нормируемую освещенность при минимальных затратах электроэнергии.
Расчет производственного освещения с помощью Dialux проводят в несколько этапов.
Расчет производственного освещения один из самых трудоёмкий, так как нужно учесть множество параметров.
Температурный режим на производстве. От того насколько высокие или низкие температуры преобладают в помещении, стоит выбрать светильник.
- Агрессивность среды. Т.е. Существуют ли в воздухе агрессивные испарения щелочей, кислот или солей.
- Тщательно обдумать коэффициент загрязненности помещения для которого вы будете делать расчёт.
Яркость
Светильник не должен слепить глаз. ГОСТ 33392-2015 Здания и сооружения. Метод определения показателя дискомфорта при искусственном освещении помещений.
Испускаемый световой поток.
должен иметь правильную цветопередачу, особенно важно если вы делаете расчет производственного освещения в цеху, где будут проводится какие либо работы с краской
Расстановка светильников.
должна быть рассчитана не только на рабочий режим, но и аварийный и эвакуационный. Не забудьте установить светильники с резервным источником питания на лестничных клетках и в местах эвакуации.
Одним из самых важных вопросов проводя расчет производственного освещения, это какой светильник наилучшим образом подойдет для конкретного помещения. Все характеристики промышленных светильников регламентируются по ГОСТ Р 54350-2015 Приборы осветительные. Светотехнические требования и методы испытаний. Если внимательно изучить этот нормативный документ вы убедитесь в том, что большинство бюджетных промышленных светильников вообще не подходят для эксплуатации на производстве.
Оцените уровень выделений конкретного производства.
Например логично будет предположить, что на производстве литья или обработки металлов будет гораздо больший эффект загрязненности нежели в цеху сборки. Стоит принять этот коэффициент, чтобы учесть, что спустя месяц работы светильников в цеху они покроются слоем копоти который сможет препятствовать изучению света. На 50 и более %.
Загроможденность.
При любом расчете освещения стоит учесть Загроможденность помещения. Если при расчете производственного освещения вы учтете оборудование, то сможете спроектировать систему освещения гораздо оптимизирование и экономичнее. Безусловное преимущество перед конкурентами.
Высота установки.
Многие светотехники получив задание провести расчёт производственного освещения сразу же устанавливают мощные промышленные светильники под самой кровлей. Зачастую это более 10 м. Для того чтобы добиться нормируемой освещенности с такой высоты, нужны светильники большой мощности, что существенно удорожает стоимость всей системы освещения. Почему то никто не учитывает, что монтажные и ремонтные работы на высоте стоят не дёшево.
Поэтому стоит оценить все производство в целом. Разбить его на зоны по принципу разделения по видам работ. И уже над этими зонами устанавливать светильники на высоте не более 3 м. Стоит упомянуть, что такой принцип не подойдёт только в случае с производством где есть передвижная балка. В таком случае все же придётся установить светильники выше передвижной балки.
Семь раз подумай перед просчётом освещения
Зачем нужны подсчёты по свету и что следует знать
Комфортная среда нахождения в доме для человека создаётся искусственным светом от ламп. При недостаточности или излишках ощущения света возникает дополнительное напряжение зрения и раздражение глаз, появляется потребность в очках, снижаются ресурсы с упадком сил, ухудшается самочувствие. Поэтому делается обязательный расчёт освещения помещения, определяется соответствие установленным санитарным нормам, подбирается оптимальный вариант источников света близкий к естественному освещению.
По оформлению и способам распределения необходимого в доме, в помещениях света, везде электроосвещение подразделяют на 3 вида: общее, акцентированное, местное. Бывает сложно разобраться с вычислениями общего освещения светодиодными лампами для жилого дома. При расчёте потребуется понимание основных параметров и определений объекта-света.
Основные световые характеристики, единицы измерения
Свет можно измерить и описать, как и многое другое на «свете». В физике освещённость – есть величина «интегральная», определяемая многими параметрами, изучаемыми наукой фотометрией.
Таблица 1. Используемые физические понятия света, обозначения и единицы измерения:
Характеристика | Обозначение | Единица измерения |
Световой поток | Ф | Лм люмен |
Сила света | I | Kд кандела, «свеча» |
Яркость | L | Kд/м² нит (нт) |
Освещённость | E | Лк люкс |
Световая температура | K | Кельвин |
Световая отдача | H | лм/Вт. |
Основные параметры светоизлученияИсточник infourok.ru
Люмены потока света – энергия волн от источника, излучаемая по всем направлениям, воспринимаемая как «яркость» по зрительному ощущению. Световые потоки по распределению лучей света бывают отражёнными, рассеянными, прямыми. Определяется тем большее число люменов, чем больше весь учитываемый поток света.
Сила света (I) похожа на плотность в пространстве потока света, его интенсивность. При определении I световой поток (Ф) делится на телесный угол (ꭥ) в стерадианах по направлению потока.
Понятие освещённости связывает количество света (светового потока) приходящегося на площадь освещаемой поверхности (E=Ф/S). Величина люксов прямо зависит от силы света источника и обратно пропорционально от квадрата расстояния до источника (при условии перпендикулярности потока к поверхности).
Прослеживается при определении величин света их взаимосвязь и качественное различие: что сам светильник ярче при больших люменах, а поверхность освещена больше при достаточно высоких величинах люксов.
Источник характеризуется эффективностью преобразования электроэнергии в свет (световая отдача Н). Она измеряется в люменах на ватт.
Светотехнические величиныИсточник rusenergetics.ru
Обмен энергией (излучением света) между электрическим источником и внешним помещением (по яркости) – по сути, работа в физическом представлении (1 Джоуль = 1 Ватт * 1 сек). Работой считается мощность излучения, умноженная на время. При известном усреднённом значении световой отдачи (Н) лампы можно примерно определить световой поток. Более ярким будет источник света при большей мощности освещения. Из источников с равной силой света (I) потребляют меньшую электрическую мощность светодиодные лампы.
Сравнение по светоотдаче источников:
- Вакуумная лампа накаливания с вольфрамовой нитью – от 8 до 10 лм/Вт..
- Галогеновая лампа – от 12 до 15 лм/Вт.
- Люминесцентная лампа с преобразованием напряжения в цоколе – от 50 до 70 лм/Вт.
- Светодиодные современные светильники – от 100-120 лм/Bт.
Для визуального понимания предмета каждому человеку важно воздействие света и цвета (особенно для художников). Определённое восприятие зрительным нервом конкретного установленного цвета спектра и фиксирует понятие цвета
Цветовая температура (К) обозначает цветность излучения света. Обычная температура и цветовая температура – разные понятия; у неба зимой, в мороз, цветовая температура составляет 12000К, у зажжённой свечи в 10 раз меньше – 1200К.
Цветовая температураИсточник ds04.infourok.ru
Применяют в практике определения цветности белого света:
- дневного света – более 5000 К,
- нейтрального – от 3300 до 5000 К,
- тёплого – менее 3300 К.
Глаз так устроен, что наличие синих оттенков в излучении источника снижает яркость его визуального восприятия.
Немного об экономике
Владельца предприятия волнует не только комфорт рабочего персонала: для него важно снизить при этом потребление электроэнергии. Достичь этой цели можно разными путями:
- применить более мощные осветительные приборы, уменьшив за счет этого их количество;
- использовать приборы с пониженным тепловыделением, что позволит сэкономить на кондиционировании цеха;
- уменьшить затраты на обслуживание светильников. Сейчас на многих заводах практикуется единовременная замена всех источников света в цехе по мере приближения к завершению срока их службы.
Перспективным вариантом является применение светодиодных светильников. Промышленное светодиодное освещение отвечает всем требованиям энергосбережения, долговечны и не требуют текущего обслуживания.
Расчет освещенности помещения
Укажите необходимые размеры в метрахY — Длина помещенияX — Ширина помещенияZ — Высота потолковL — Количество светильниковN — Уровень освещенности помещения на 1 квадратный метр
Нормы уровня освещенности N (lk) | |
---|---|
Освещенность жилых помещений | |
Кухни, кухни-столовые, кухни-ниши | 150 |
Детские | 200 |
Кабинеты, библиотеки | 300 |
Внутриквартирные коридоры, холлы | 50 |
Кладовые, подсобные | 300 |
Гардеробные | 75 |
Сауна, раздевалки, бассейн | 100 |
Тренажерный зал | 150 |
Биллиардная | 300 |
Ванные комнаты, санузлы, душевые | 50 |
Помещение консьержа | 150 |
Лестницы | 20 |
Поэтажные внеквартирные коридоры, вестибюли, лифтовые холлы | 30 |
Колясочные, велосипедные | 30 |
Тепловые пункты, насосные, машинные помещения лифтов | 20 |
Основные проходы технических этажей, подвалов, чердаков | 20 |
Шахты лифтов | 5 |
Освещение помещений административных зданий | |
Кабинеты, рабочие комнаты, офисы представительства | 300 |
Проектные залы и комнаты конструкторские, чертежные бюро | 500 |
Машинописные бюро | 400 |
Помещения для посетителей, помещения обслуживающего персонала | 400 |
Читальные залы | 400 |
Помещения записи и регистрации читателей | 300 |
Читательские каталоги | 200 |
Лингафонные кабинеты | 300 |
Книгохранилища, архивы, фонды открытого доступа | 75 |
Переплетно-брошюровочные помещения, площадью не более 30 кв. м | 300 |
Помещения для ксерокопирования, площадью не более 30 м | 300 |
Макетные, столярные, ремонтные мастерские | 300 |
Помещения для работы с дисплеями и видеотерминалами | 400 |
Конференцзалы, залы заседаний | 200 |
Фойе и тамбуры | 150 |
Лаборатории органической и неорганической химии | 400 |
Аналитические лаборатории | 500 |
Весовые, термостатные | 300 |
Лаборатории научно-технические | 400 |
Фотокомнаты, дистилляторные, стеклодувные | 200 |
Архивы проб, хранение реактивов | 100 |
Моечные | 300 |
Освещенность образовательных учреждений | |
Классные комнаты, кабинеты, аудитории школ | 500 |
Аудитории, учебные кабинеты, лаборатории | 400 |
Кабинеты информатики и вычислительной техники | 200 |
Учебные кабинеты технического черчения и рисования | 500 |
Лаборантские при учебных кабинетах | 400 |
Лаборатории органической и неорганической химии | 400 |
Мастерские по обработке металлов и древесины | 300 |
Инструментальная, комната мастера инструктора | 300 |
Кабинеты обслуживающих видов труда | 400 |
Спортивные залы | 200 |
Хозяйственные кладовые | 50 |
Крытые бассейны | 150 |
Актовые залы, киноаудитории | 200 |
Эстрады актовых залов, кабинеты и комнаты преподавателей | 300 |
Рекреации | 150 |
Освещенность помещений гостиниц | |
Бюро обслуживания, помещения обслуживающего персонала | 200 |
Гостиные, номера | 150 |
Возможности программы.
Характеристики источников света
После расчета необходимого уровня освещенности можно переходить к выбору лампочек. Они подбираются с учетом следующих критериев:
- Тип цоколя. Зависит от того, какой используется в светильнике. В крупных устройствах ставятся цоколи Е, в точечной подсветке могут применяться G и другие виды.
- Потребляемая мощность. Зависит от конкретного типа лампочки.
- Напряжение питания. Сетевое напряжение составляет 220 В, частота 50 Гц. Не все лампы работают на такой частоте, для устройств на 12 В и 24 В требуется установка понижающего трансформатора.
- Цветовая температура. Оптимальный диапазон для помещения от 2600 К до 5000 К. Теплый свет дают лампы 2600-3500 К, дневной белый 3500-4000 К, холодный 4000-5000 К.
- Световой поток. Показывает, насколько ярко лампочка будет освещать площадь.
В домах для общей подсветки используется 4 типа ламп – накаливания, галогенные, люминесцентные, светодиодные. Все они имеют свои характеристики, плюсы и минусы.
Лампы накаливания
Это самый дешевый вид лампочек. Они дают приятный желтый свет. Лампы накаливания уже практически полностью заменены другими источниками света, так как являются неэффективными. К недостаткам можно отнести малый КПД, большое потребление энергии, малый срок службы, хрупкость и небезопасность.
Галогенные источники
Имеют схожую конструкцию с лампой накаливания, но есть свои особенности. В первую очередь, это касается колбы – она выполнена из кварцевого стекла. Оно позволяет выдерживать высокие температуры, поэтому внутри колба заполняется парами йода, брома и других галогенов. Срок службы за счет отказа от хрупкой нити накала повышается, но многие недостатки сохраняются. Из-за применения кварца к колбе нельзя прикасаться голыми руками. Жировые пятна приводят к тому, что стекло становится тонким и хрупким и может взорваться.
Преимущества – широкое разнообразие, более высокий КПД, диапазон цветовых температур от 2800 до 3000 К.
Недостатки – высокая температура во время работы, хрупкость, неэкологичность, сложность утилизации, большое потребление электроэнергии.
Люминесцентные приборы
Этот тип раньше был представлен длинными лампами-трубками. Сейчас появились модели со стандартными цоколями под обычный патрон. В быту люминесцентные лампочки называют энергосберегающими. Состоят из стеклянной колбы, покрытой внутри люминофором и заполненной смесью газов.
Достоинства: высокая светоотдача, малое потребление энергии, длительность срока службы, широкий диапазон рабочих температур.
Недостатки: наличие ртути внутри колбы, сложность утилизации, наличие уф излучения, мерцание, долгий старт, ограниченное число циклов включения и выключения.
Светодиоды
Светодиодные источники света считаются самым удачным вариантом для дома. Они не содержат в составе вредных веществ, работают лишь на свечении от полупроводникового кристалла. Имеют широкий ассортимент по цветам, размерам, формам.
К преимуществам относят низкую потребляемую энергию, высокий КПД, долговечность, отсутствие мерцаний, безопасность, широкий диапазон рабочих температур, разнообразие цветовых температур. Благодаря малому нагреву светодиоды можно устанавливать в натяжные потолки не боясь того, что полотно может быть деформировано. При покупке в профессиональном магазине от известного изготовителя дается гарантия, по которой лампу можно поменять при производственном браке.
Дело за малым – устанавливаем фонари!
Расчет остался позади, теперь пришла пора заняться воплощением проекта в жизнь. Выяснив количество осветительных приборов, возьмите план дачного участка и равномерно распределите их по территории, соблюдая нужные расстояния. Затем пора устанавливать опоры или засверливать в стены отверстия для креплений, если речь идет о настенных приборах. Сложнее всего с опорами – для работы вам понадобится строительный уровень, цемент, песок, щебень мелкой фракции, пластиковая труба, деревянная опалубка.
Шаг 1: Выкапываем колодец
С помощью коловорота выройте колодец глубиной около 70 см. На дно колодца засыпьте слой песка и щебня общей толщиной 20 см. Эта подушка тщательно утрамбовывается, после чего устанавливается деревянная опалубка – она должна подниматься над уровнем грунта на 10–20 см. В опалубке следует предусмотреть место выхода пластиковой трубы, которая будет служить ходом для подземного кабеля к светильнику через бетонное основание. Торцы трубы следует обязательно заклеить, чтобы раствор не закупорил ее.
Шаг 2: Заливка фундамента
Затем выполняется стандартный замес бетонного раствора и заливается внутрь колодца с опалубкой. После утрамбовки раствора по центру будущей опоры устанавливается вертикально анкер, которые будет креплением для будущего фонарного столба. Раствор должен полностью затвердеть – на это может уйти несколько дней. Не забывайте в жаркую погоду поливать бетон водой, чтобы он не пересох и не растрескался.
Шаг 3: Подключение фонарей
Опоры крепятся к анкеру у основания, затем подводится проводка и устанавливаются фонари. Не забудьте предусмотреть выключатели света, если в них есть необходимость. Провода следует соединять с помощью клемм и термоусадочной трубки, которая обеспечит наилучшую степень гидроизоляции.
Шаг 4: Проверка
После установки осветительных приборов не забудьте осуществить контрольную проверку соединений, сопротивления нуля с фазой и работу выключателей.
Для установки осветительных приборов нет никакой нужды обращаться к профессиональным электрикам – соблюдая правила безопасности, вы можете совершенно самостоятельно справиться с этой задачей.
Задача №1 — расчёт мощности светильника
Я столкнулся c первой задачей. То есть я решил, каким образом будут располагаться светильники и для осуществления моей задумки, я расположил девять светильников в виде буквы «П»:
Соответственно мне необходимо было определить, каким световым потоком должен обладать светильник, чтобы обеспечить требуемую освещённость на кухне, а по световому потоку выбрать марку и модель светильника.
Для расчёта требуемого количества светильников нам необходимо знать нормативную освещённость, которая устанавливается СНиП 23-05-95* — «Искусственное и естественное освещение». Согласно данного СНиПа для кухни Ен=150 лк
Площадь моей кухни равна 5 кв.м, S=5
Количество светильников: N=9
Теперь осталось разобраться с коэффициентами:
К – коэффициент запаса, также как и нормативная освещённость принимается по СНиП 23-05-95 (для жилых помещений 1,4 – 1,5), я принял К=1,4
Z – коэффициент неравномерности, принимается в зависимости от типа ламп и находится в пределах 1,0-1,2, для светодиодных светильников допускается принять Z=1,0
η – коэффициент использования светового потока, зависит от индекса помещения, отражающих поверхностей и типа ламп. Вообще данный коэффициент принимается по специальным таблицам, их можно найти на сайтах производителей ламп. На данный момент, я смог найти таблицы только для люминесцентных и ртутных ламп, всё-таки светодиодные лампы только набирают обороты, и информации для расчётов практически нет, но при всём этом, одну из таких таблиц активно используют сайты, продающие светодиодное оборудование: вот один из них — http://diode-system.com/kak-rasschitat-kolichestvo-svetilnikov.html А если используют профессионалы, то почему бы не воспользоваться и нам?
Таблица коэффициентов использования светового потока:
Теперь нужно понять, как ей пользоваться. Мы видим, что коэффициент использования светового потока зависит от индекса помещения и от коэффициентов отражения поверхностей потолка, стен и пола. Для коэффициентов отражения приведены наиболее распространённые варианты. Например: схема 0,7-0,5-0,3 (четвёртый столбик таблицы) соответствует помещению с белым потолком, светлыми обоями, и напольным покрытием, которое темнее обоев (это наиболее распространённый вариант)
Примерные коэффициенты отражения приведены в таблице ниже:
Согласно таблицы, для моей кухни подойдёт схема 0,7-0,5-0,3
Теперь рассчитаем индекс помещения — i. Этот параметр напрямую зависит от габаритов помещения и высоты рабочей поверхности. Если рабочей поверхностью считают стол, то обычно hраб=0,8 м. Для кухни рабочей поверхностью является: стол, плита, столешница, мойка, а они, как правило, имеют высоту 0,8-1,0 м, поэтому я принимаю hраб=0,8 м
Теперь рассчитаем расчётную высоту. Расчётная высота – это расстояние от светильника до рабочей поверхности, в моём случае светильники точечные встраиваемые, то есть расчётная высота будет измеряться от плоскости потолка до рабочей поверхности:
Сам индекс помещения рассчитывается по формуле:
a и b – соответственно ширина и длина помещения.
Округляем индекс помещения в большую сторону из ряда: 0,6; 0,8; 1,00; 1,25 и т.д. (смотрите второй столбец таблицы). Соответственно я принимаю 0,8
Теперь у нас есть все данные, чтобы определить коэффициент использования светового потока, пользуемся таблицей и получаем, что η = 0,39
И так, подставляем все данные в формулу для определения светового потока одного светильника:
То есть световой поток одного светильника будет равен 299 люмен. Это ориентировочно светодиодные светильники мощностью 3,5-4 Вт (см. таблицу ниже)
То есть для моей кухни подойдёт 9 светодиодных ламп мощностью 3,5 — 4 Вт (≈ 299 лм). Заходим в интернет и находим светильники соответствующей мощности, на всякий случай смотрим такой параметр, как световой поток (чтобы он был не менее нашего расчётного).
Вот, что удалось найти сразу:
Самое главное не ошибитесь с типом лампы, её цоколем и патроном. В своих точечных светильниках я использовал лампы с типоразмером MR16 и цоколем GU-5.3