Что такое рентген
Содержание:
- Где можно пройти обследование
- Доза облучения
- Решение Emerson
- Чем отличается рентген от флюорографии?
- Купить билеты на поезд онлайн через официальный сайт
- Положение на шкале электромагнитных волн[править | править код]
- Что безопаснее: рентген или КТ?
- Рентген, как единица измерения:
- Комнатные растения в интерьере детской
- Кратные и дольные единицы:
- Частота проведения рентгена легких
- Какой дозиметр выбрать
- Как проходит и сколько длится процедура?
- Что такое радиация?
- Что подходит при подозрении на Covid-19?
- Свежие газеты
- Какое облучение получают рентгенологи?
- Противопоказания
- Вынужденные диагностические дозы рентген облучения
- Суть устройства
- Рентген, как единица измерения:
Где можно пройти обследование
Чтобы выполнить процедуру рентгена легких, можно обратиться в любое медицинское учреждение. Рентген-аппаратами оснащены как государственные больницы, так и частные клиники. Процедура проводится в специально оборудованном кабинете, стены и двери которого дополнительно усилены для предотвращения проникновения сквозь них рентген-излучения. Выдача заключения с расшифровкой результата занимает от 15 минут до часа.
Возможна ли процедура на дому
Рентген легких производится в вертикальном положении, то есть стоя. Некоторые заболевания не позволяют выполнить данное требование. В подобных ситуациях используются мобильные рентгенографы, которые дают возможность проводить обследование больного на дому или в медицинской палате. К категориям таких пациентов относятся следующие:
- со степенью инвалидности;
- престарелые;
- онкобольные;
- с обездвиженными нижними конечностями (гипсом);
- являющиеся нетранспортабельными;
- тяжелые инфекционные больные.
Выезд и обследование на дому проводит специальная бригада врачей. Качество результатов мобильной рентгеновской установки и стационарного обследования не отличаются по своей точности.
Доза облучения
Дозировка излучения, применяемого при рентгенографии, зависит от процедуры. Например, эффективная доза рентгена грудной клетки составляет 0,1 мЗв, а КТ брюшной полости — 10 мЗв. Американская ассоциация физиков в медицине (AAPM) утверждали , что «риски медицинской визуализации при дозах пациента ниже 50 мЗв для отдельных процедур или 100 мЗв для нескольких процедур в течение коротких периодов времени слишком малы , чтобы быть обнаружены и может не существовать.» Другие научные органы, разделяющие этот вывод, включают Международную организацию медицинских физиков , Научный комитет ООН по действию атомной радиации и Международную комиссию по радиологической защите . Тем не менее, радиологические организации, в том числе Радиологическое общество Северной Америки (RSNA) и Американский колледж радиологии (ACR), а также несколько государственных учреждений указывают стандарты безопасности, чтобы гарантировать минимальную дозу излучения.
Экранирование
Свинец является наиболее распространенной защитой от рентгеновских лучей из-за его высокой плотности (11340 кг / м 3 ), тормозной способности, простоты установки и низкой стоимости. Максимальный радиус действия фотона высокой энергии, такого как рентгеновский луч, в веществе бесконечен; в каждой точке вещества, через которую проходит фотон, существует вероятность взаимодействия. Таким образом, вероятность отсутствия взаимодействия на очень больших расстояниях очень мала. Таким образом, экранирование пучка фотонов является экспоненциальным (с длиной ослабления , близкой к длине излучения материала); удвоение толщины экрана компенсирует экранирующий эффект.
Рентгеновские лучи, генерируемые пиковыми напряжениями ниже | Минимальная толщина свинца |
---|---|
75 кВ | 1.0 мм |
100 кВ | 1,5 мм |
125 кВ | 2,0 мм |
150 кВ | 2,5 мм |
175 кВ | 3,0 мм |
200 кВ | 4.0 мм |
225 кВ | 5.0 мм |
300 кВ | 9.0 мм. |
400 кВ | 15.0 мм. |
500 кВ | 22.0 мм. |
600 кВ | 34.0 мм. |
900 кВ | 51.0 мм. |
В следующей таблице показана рекомендуемая толщина свинцовой защиты в зависимости от энергии рентгеновского излучения в соответствии с Рекомендациями Второго Международного радиологического конгресса.
Кампании
В ответ на растущую обеспокоенность населения дозами облучения и продолжающийся прогресс передовых методов, в рамках Общества детской радиологии был создан Альянс за радиационную безопасность в педиатрической визуализации . Совместно с Американским обществом радиологических технологов , Американским колледжем радиологов и Американской ассоциацией физиков в медицине Общество детской радиологии разработало и запустило кампанию Image Gently, которая предназначена для поддержания высокого качества исследований изображений при использовании самых низких дозы и передовые методы радиационной безопасности, доступные для педиатрических пациентов. Эта инициатива была одобрена и применялась растущим списком различных профессиональных медицинских организаций по всему миру и получила поддержку и помощь от компаний, производящих оборудование, используемое в радиологии.
После успеха кампании Image Gently, Американский колледж радиологии, Радиологическое общество Северной Америки, Американская ассоциация физиков в медицине и Американское общество радиологических технологов начали аналогичную кампанию для решения этой проблемы среди взрослых. Население назвало Образ Мудро. Всемирная организация здравоохранения и Международное агентство по атомной энергии (МАГАТЭ) Организации Объединенных Наций также работают в этой области и имеют текущие проекты , направленные на расширяющие лучшие практики и более низкую дозу облучения пациента.
Оплата провайдера
Вопреки совету, который подчеркивает необходимость проведения рентгенограмм только в интересах пациента, последние данные свидетельствуют о том, что они используются чаще, когда стоматологи получают оплату за услуги.
Решение Emerson
Клапаны ASCO серии 327 от компании Emerson (рис. 3, табл.) — это универсальные соленоидные клапаны 3/2 прямого действия (со сбалансированной тарелкой), доступные в различных исполнениях по материалам, мощности, пропускной способности и сертификации. Они подходят для различных задач, например для управления приводом, разгрузки компрессора и контроля над средствами обеспечения, и могут использоваться в составе широкого диапазона инженерных решений, среди которых системы управления приводом, системы управления с резервированием и байпасные панели.
Рис. 3. Соленоидные клапаны ASCO серии 327
Благодаря уникальной конструкции и заверенному сертификатами соответствию требованиям безопасности, клапаны серии 327 являются проверенным, безопасным, надежным и адаптируемым решением, подходящим для использования в жестких промышленных условиях. Такой клапан обладает взрывозащитой и превосходит строгие требования нефтегазовой отрасли.
Материал корпуса клапана |
Нержавеющая сталь 316L / латунь / алюминий |
Размер |
1/4″, 1/2″ |
Пропускная способность (Kv) |
До 1,5 м3/ч |
Давление |
ΔP 0–10 бар |
Рабочая температура |
–60…+120 °С |
Класс SIL |
До 3 (Exida и TÜV) |
Энергопотребление |
от 0,5 Вт |
Материал корпуса / оболочки / катушки |
Алюминий / нержавеющая сталь 316L / заливка эпоксидной смолой |
Дополнительные возможности |
Ручное управление, ручной сброс, съемное ручное управляющее устройство |
Международная сертификация Ex |
CU TR (ТР ТС), ATEX, IECEx, NEMA/ UL/CSA, NEPSI, PESO, INMETRO, KOSHA и т. д. |
Сертификаты безопасности |
Exida, TÜV |
Клапаны обладают прочной «недышащей» конструкцией, специальным устройством уплотнения и катушкой с увеличенным сроком службы. Все катушки проектируются и изготавливаются на собственных заводах Emerson.
Также клапаны серии 327 позволяют значительно сократить время технического обслуживания и расходы на ввод в эксплуатацию. Например, устройство для управления клапаном при недостаточном давлении можно извлечь вручную, без демонтажа клапана или выключения пневматической системы оборудования.
К другим преимуществам данных клапанов относятся:
- модели с пониженным энергопотреблением, которые уменьшают размеры источников питания и кабелей;
- отвечающие требованиям NACE материалы, снижающие риск коррозии;
- катушки класса H с эпоксидной оболочкой для долгого срока службы;
- внутренняя устойчивость к вибрациям;
-
наличие постоянного воздушного зазора (даже при подаче питания), который снижает любые риски заедания (рис. 4), вызванные остаточным магнетизмом.
Чем отличается рентген от флюорографии?
Флюорография и рентген основываются на действии ионизирующего излучения, однако последний позволяет получить более четкий снимок при гораздо меньшей лучевой нагрузке. Флюорография – это скорее профилактическое исследование, так как из-за невысокого качества изображения и маленького размера снимка (11 на 11 см) рассмотреть небольшие патологии на нем трудно. Для уточнения заболевания потом в большинстве случаев все равно назначают рентген.
Во время проведения флюорографии на пленочном оборудовании пациент стоит не перед кассетой с пленкой, как на рентгене, а перед флуоресцирующим экраном. Изображение грудной клетки, появившееся на нем, фотографируется на специальную плёнку. По сути флюорограмма – это аналоговая фотография с экрана. Этот метод диагностики ограничен исследованием органов грудной клетки, в то время как рентген может проводиться для любой части тела.
Появление в современных флюроографах цифрового детектора ионизирующего излучения дало возможность выводить изображение сразу на экран без потери качества. Вместе с этим снизилась и доза облучения, получаемая пациентом при исследовании. Теперь цифровая флюорография – это упрощенный аналог рентгеновского аппарата, предназначенный для диагностики органов грудной клетки. Эффективность цифровой флюорографии на 15% выше по сравнению с пленочной за счет более четкого изображения, но из-за высокой стоимости оборудования эта процедура не так распространена.
Рентгенография назначается только при наличии показаний или для контроля процесса лечения и позволяет получить снимок в натуральную величину. Он может быть обзорным, то есть выполняться в двух проекциях, или прицельным, когда исследуется только определенный участок тела. Следовательно, рентген предпочтительнее флюорографии из-за более высокой точности изображения и сравнительно низкой лучевой нагрузки.
Купить билеты на поезд онлайн через официальный сайт
Положение на шкале электромагнитных волн[править | править код]
Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо связанных в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3×1016 до 6×1019Гц и длиной волны (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкое рентгеновское излучение характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткое рентгеновское излучение обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткое рентгеновское излучение используется преимущественно в промышленных целях.
Что безопаснее: рентген или КТ?
Рентген безопаснее для здоровья, но ценность КТ как диагностического метода намного выше. КТ позволяет получить информацию о состоянии костей, мягких тканей и кровеносных сосудов в трехмерной проекции. Компьютерная томография – это метод неинвазивного исследования внутренних органов человека, при котором используется рентгеновское излучение. Однако, в отличие от рентгенографии, дозы облучения при проведении КТ намного выше из-за многократного сканирования.
КТ позволяет добиться объемного изображения благодаря устройству аппарата: источником лучей служит контур в виде буквы С, внутри которого расположена кушетка для пациента. Это позволяет выполнить серию снимков органов с разных ракурсов, которые обрабатываются компьютером и составляют трехмерное изображение. Кроме того, врач имеет возможность посмотреть поперечный «срез» органа, который, в зависимости от настроек аппарата, может достигать толщины всего в 1 мм.
Подсчитано, что примерно 0,4 процента случаев рака вызваны КТ. Некоторые ученые ожидают, что этот уровень будет расти параллельно с более широким использованием КТ в медицинских процедурах. Специалисты оценивают риск развития рака от прохождения одной процедуры КТ как 1:2000.
Рентген, как единица измерения:
Рентген – внесистемная единица экспозиционной дозы облучения рентгеновским или гамма-излучением, определяемая по их ионизирующему действию на сухой атмосферный воздух, названная в честь немецкого физика Вильгельма Конрада Рентгена.
Рентген имеет русское обозначение – Р и международное – R.
Рентген равен экспозиционной дозе фотонного излучения, при которой в 1 см³ воздуха, находящегося при нормальном атмосферном давлении и 0 °C, образуются ионы, несущие заряд, равный 1 единице заряда СГСЭ (≈3,33564⋅10−10 Кл) каждого знака. При дозе рентгеновского или гамма-излучения, равной 1 Р, в 1 см3 воздуха образуется 2,082⋅109 пар ионов.
Единица экспозиционной дозы в Международной системе единиц (СИ) – кулон на килограмм (Кл/кг, C/kg).
1 Кл / кг = 3876 Р.
1 Р = 2,57976⋅10−4 Кл / кг.
В Российской Федерации в соответствии с Постановлением Правительства РФ от 31 октября 2009 г. N 879 “Об утверждении Положения о единицах величин, допускаемых к применению в Российской Федерации” рентген допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения «ядерная физика, медицина».
Международная организация законодательной метрологии (МОЗМ) в своих рекомендациях относит рентген к единицам измерения, «которые могут временно применяться до даты, установленной национальными предписаниями, но которые не должны вводиться, если они не используются».
Рентген в качестве единицы дозы рентгеновского излучения был введён в 1928 году II Международным конгрессом радиологов (г. Стокгольм) в честь В. Рентгена, первооткрывателя рентгеновских лучей.
Применение рентгена:
Рентген применяется для измерения экспозиционной дозы облучения рентгеновским или гамма-излучением. Это вид излучения, который помогает не только увидеть сломанные кости, но и проанализировать камни на Марсе. Несмотря на то, что, например, ГОСТ 8.417-81 прямо запретил использование большинства внесистемных единиц измерения, рентген продолжает достаточно широко использоваться в технике, отчасти потому, что многие имеющиеся измерительные приборы (дозиметры) отградуированы именно в рентгенах, например, ДРГ-01Т1.
На практике сейчас чаще пользуются системными единицами поглощённой, эквивалентной и эффективной (а также групповой, коллективной, амбиентной и др.) дозы, то есть грэями и зивертами (а также кратными/дольными производными от них).
Комнатные растения в интерьере детской
Кратные и дольные единицы:
Кратные и дольные единицы образуются с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
величина | название | обозначение | величина | название | обозначение | ||
101 Р | декарентген | даР | daR | 10−1 Зв | децирентген | дР | dR |
102 Р | гекторентген | гР | hR | 10−2 Зв | сантирентген | сР | cR |
103 Р | килорентген | кР | kR | 10−3 Зв | миллирентген | мР | mR |
106 Р | мегарентген | МР | MR | 10−6 Зв | микрорентген | мкР | µR |
109 Р | гигарентген | Гр | GR | 10−9 Зв | нанорентген | нР | nR |
1012 Р | терарентген | ТР | TR | 10−12 Зв | пикорентген | пР | pR |
1015 Р | петарентгент | ПР | PR | 10−15 Зв | фемторентген | фР | fR |
1018 Р | эксарентген | ЭР | ER | 10−18 Зв | атторентген | аР | aR |
1021 Р | зеттарентген | ЗР | ZR | 10−21 Зв | зепторентген | зР | zR |
1024 Р | иоттарентген | ИР | YR | 10−24 Зв | иокторентген | иР | yR |
Частота проведения рентгена легких
Ответ на вопрос: «как часто взрослым можно делать рентген легких?» не имеет однозначного ответа. Врачу необходимо одновременно учитывать несколько компонентов, в первую очередь касающихся индивидуальности больного: насколько сложен прогнозируемый диагноз, каково функциональное состояние пациента, наличие индивидуальных противопоказаний, возможность применения иных технических методов диагностики и прочее.
Данное исследование может преследовать профилактическую, диагностическую или лечебную цели.
Профилактический рентген (всем знакомая флюорография) используется выявления различий между нормальным и патологическим состоянием. Она делается не более одного раза в 12 месяцев.
Рентген легких нужно делать не менее 2 раз в год.
Количество назначений диагностического рентгена зависит от того, насколько быстрее выполняемые манипуляции позволят врачу разобраться с легочной патологией и оценкой динамики терапевтических мероприятий. Считается, что даже максимальные дозы облучения не страшнее, чем последствия, которые повлечет за собой заболевание, если его вовремя не выявить.
Лечебная ипостась рентгена лёгких призвана проводить лучевую терапию онкологического заболевания путем уничтожения патологических клеток. И в этом случае игра стоит свеч: лечение проводится столько времени, сколько потребуется для ликвидации опухоли.
Какой дозиметр выбрать
Чтобы определиться какой дозиметр выбрать, нужно понять, кокой вид радиации для человека представляет опасность и что желательно контролировать в повседневной жизни.
Все виды радиации опасны, но в бытовой сфере и окружающей нас среде, можно столкнуться с действием в основном трех видов радиации — это бета, гамма и альфа излучение. Наибольшую опасность представляет альфа излучение, так как оно наносит живой ткани наибольший урон. Но зарегистрировать альфа излучение сложнее всего, потому что для его измерения, дозиметр должен быть поднесен вплотную к источнику излучения, так как альфа излучение распространяется в пространстве на небольшие расстояния в пределах 2-3 см. Дозиметры способные зарегистрировать альфа излучение, должны иметь отдельный датчик в дополнении к датчику Гейгера-Мюллера. Обычно это специальное окошечко в дозиметре, которое имеет сдвигаемую защитную крышку.
Если позволяют денежные средства, то лучше купить дозиметр способный измерять три вида радиации — бета, гамма и альфа излучение.
Если вы не хотите тратиться на покупку дорогого прибора, то можно приобрести дозиметр-радиометр, измеряющий бета и гамма излучение. Это неплохое начало и возможно поможет вам избежать серьезных проблем со здоровьем. Такой прибор отлично подойдет для измерения общего радиационного фона в помещении и вне его. С помощью данного дозиметра можно проверить на безопасность продукты питания, строительные материалы, автомобиль и любые другие бытовые вещи.
При выборе дозиметра следует обратить внимание на следующие характеристики:
тип используемого детектора — это основной параметр, влияющий на точность и функциональность прибора. Лучше если это будет газоразрядный детектор, например, счетчик Гейгера-Мюллера. Хуже если это полупроводниковый детектор.
виды измеряемой радиации — прибор может измерять как один вид радиации, так и несколько видов. При измерении нескольких видов радиации, измерения могут проводиться одновременно для различных видов излучений, или необходимо будет переключаться с одного вида излучения на другой. Самый простой и распространенный вид дозиметра — это измерение бета излучения. Но лучше, если дозиметр будет способен измерять три вида излучений — альфа, бета, гамма.
погрешность измерения — это величина, которая характеризует точность прибора. Чем меньше погрешность, тем выше точность прибора, соответственно тем он лучше и дороже. Для бытовых приборов погрешность обычно составляет ±25% или ±30%. Для профессиональных дозиметров погрешность уже будет меньше чем ±7%.
диапазон измеряемых величин — это максимальное и минимальное значение радиации, которое способен зарегистрировать прибор
Стоит обратить внимание лишь на нижний порог измерений, он не должен быть выше чем 0,05 мкЗв/ч. Максимально измеряемый уровень радиации у всех дозиметров достаточно высок.
поверка прибора — это отметка в паспорте дозиметра, что он проверен на заводе изготовителе и соответствует заявленным в паспорте техническим характеристикам и производит измерения с заданной точностью
Желательно, чтобы отметка о поверке была в паспорте. В крайнем случае, в паспорте изделия должна стоять отметка ОТК (отдел технического контроля) о приемке изделия.
Остальные характеристики дозиметра влияют на его удобство эксплуатации, внешний вид и выбираются исходя из личных предпочтений.
Для чего нужно покупать дозиметр?
Для чего нужно приобритать дозиметр в бытовых целях, каждый решает сам.
В качестве информации к размышлению, можно посмотреть сюжет любительской видео съемки в городе Крансодаре, который является одним из самых безопасносных городов России
в отношении экологической обстановки. В простом лесном массиве, безобидные на вид предметы (7-я минута видео), излучают радиацию в миллионы раз превышающие безопасную норму. Находясь даже незначительное время в подобной зоне, можно получить дозу, которая с большой вероятностью приведет к крайне негативным последствиям для организма. К сожалению далеко не всегда, возле подобных объектов установлены занки «опасно радиация». Всему виной халатность и безответственность. Поэтому даже прогуливаясь в каком либо месте (фактически любом), человек может и не подозревать, что подвергается мощному радиационному воздействию. А потом удивляться, откуда берутся различные проблемы со здоровьем.
Как проходит и сколько длится процедура?
Неподвижность во время обследования пациента – важный нюанс диагностики. С этой целью для детей используются специальные подставки и фиксаторы.
Длительность исследования не превышает нескольких секунд. Зачастую делают обзорный снимок в прямой проекции, когда человек располагается передней поверхностью грудной клетки к аппарату. При необходимости он может стоять боком, что требуется для выполнения снимка в боковой проекции.
Основные моменты исследования:
- Пациенту нужно раздеться выше пояса.
- Снять металлические украшения.
- Убрать волосы с исследуемой зоны.
- Прислониться к аппарату.
- Сделать вдох и задержать дыхание по команде специалиста.
- После выполнения снимка дыхание можно восстановить.
Что такое радиация?
Что бы ответить на этот вопрос, понять его физический смысл, оценить степень воздействия на нашу жизнь, лучше начать с основы — строения вещества. Это даст общие представления о природе радиации, причинах ее появления.
В других разделах данного ресурса рассматриваются все аспекты радиации, начиная с физической сущности процесса, рассмотрением биологического действия радиации на живые организмы, заканчивая социальным влиянием радиации на общество.
Нужно ли вообще человеку знать о данном явлении, вникать в суть процесса, разбираться с его воздействием на нашу жизнь, на наше здоровье или просто довериться заверениям официальных структур, что радиация «безвредна», «естественна» и «безопасна»? Каждый сам для себя отвечает на данный вопрос. Основное коварство этого явления — это невозможность его ощутить нашими органами чувств, пока не станет слишком поздно. Радиация невидима, неощутима, не имеет запаха и вкуса. За последний век, индустриальное развитие общества, привело к появлению в массовом количестве искусственных источников радиации, сделав радиацию частью нашей повседневной жизни.
Человек за последние 100 лет, в массовом количестве начал добывать, перерабатывать, выделять и создавать новые вещества, которые обладают радиоактивными свойствами. Повсеместно от промышленности, медицины, энергетики до атомного оружия, стали применяться радиоактивные материалы, принося с неоспоримой ценностью и пользой для общества, все сопутствующие радиации опасности.
Возможно, стоит уделить время и узнать немного больше о процессе, который за последний век изменил жизнь человека, принеся ощутимые преимущества нашему обществу, дав ему мощный толчок развития, но к сожалению, ставший причиной гибели более миллиарда человек за последние 70 лет (по расчетам известного американского эпидемиолога и радиоэколога Розалии Бертелл, опубликованным в журнале «The Ecologist» (1999, vol. 29, № 7, p. 408 — 411)). Это больше, чем погибло во всех войнах, которые вел человек, убивая себе подобных. Уже не так много людей, чьей судьбы, его близких или знакомых, в разной степени не коснулась тема такой страшной болезни как — рак. Основной из главных и основных причин, провоцирующих начало развития этой болезни в организме человека — это воздействие радиоактивных изотопов на ткани и органы человека. Конечно есть и другие причины, например, курение или воздействие химических веществ, но это не уменьшает степень влияния радиации в развитии раковых заболеваний самой различной локализации.
Радиация прочно вошла в нашу жизнь, стала ее частью, и понимать, что это такое, какие опасности в себе таит, как предостеречь себя и своих близких от смертельно опасного биологического действия радиации — стоит знать.
Цель данного ресурса, не в коем случае не напугать, не посеять панику или развить фобии.
Цель данного ресурса — это предоставить доступным языком объективную информацию о радиации, человеку, которому не безразлично его здоровье и здоровье его близких. Понимая суть процесса, все его аспекты, общество в целом может выбирать путь своего развития и каждый из нас может внести свой вклад.
Статьи о радиации на сайте
Строение вещества
Строение атома. Что такое радиация, причины возникновения радиации. Распад радиоактивных веществ. Что такое протоны, нейтроны, электроны, изотопы, нуклиды.
Подробнее
Виды радиоактивных излучений
Виды радиации, состав излучения и основные характеристики. Действие радиации на вещество.
Подробнее
Дозиметры
Измерение радиации. Виды дозиметров, их устройство и рекомендации по выбору прибора измерения.
Подробнее
Источники радиоактивных излучений
Источники радиации. Естественные источники излучения, природный радиационный фон. Космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.
Подробнее
Единицы измерения и дозы радиации
Единицы измерения и дозы радиации
Подробнее
Нормативные документы по радиации
Нормативные документы по радиации
Подробнее
Что подходит при подозрении на Covid-19?
По словам Сергея Аникеева, флюорографию он бы не стал рассматривать как метод исследования при подозрении на коронавирусную инфекцию. И вообще многие врачи считают, что флюорография как метод исследования изжила себя. Качество рентгеновских снимков, по словам врача, позволит увидеть пневмонию. «Рентгена вполне достаточно, чтобы оценить, есть пневмония или нет. КТ — это уже более тонкая оценка поражения, степени фиброза», — считает Аникеев.
При показаниях, например, положительном тесте на Covid-19, ухудшении самочувствия при подтвержденной коронавирусной инфекции есть смысл делать компьютерную томограмму. Обычно КТ назначают, если на флюорограмме или рентгенограмме легких врач увидел изменения, которые требуют детального исследования. КТ информативнее рентгена, если речь идет об исследовании легких. На томограмме видны не только легкие, но и бронхи, трахея, сосуды легких (аорта, легочные артерии, полые вены).
А вот МРТ при ковиде не делают, потому что при МРТ исследуют жидкости и мягкие ткани, а в легких воздух, и легкие МРТ не видит. Но если коронавирусом поражены другие органы, а это вполне вероятно, так как ковид поражает мелкие сосуды, а они есть во всех органах, то на МРТ это будет видно. По словам Сергея Аникеева, он уже видел пораженные коронавирусной инфекцией почки, мозг. «Ничего хорошего нет, требуется продолжительное лечение, реабилитация. Последствия ковида существуют», — поясняет он.
Свежие газеты
Какое облучение получают рентгенологи?
Охрана труда врачей-рентгенологов жестко регулируется. Профессиональные работники должны соблюдать все правила безопасности и не превышать дозы ионизирующей радиации в работе. При просвечивании людей они ограждаются защитным экраном, отдельным помещением и специальной одеждой. Такие сотрудники проходят регулярные обследования для контроля здоровья.
Но и они иногда «,сгорают», на работе. Проявлениями хронической лучевой болезни у рентгенологов могут быть:
- Вегето-астенический синдром – снижение аппетита, головные боли, усталость,
- Офтальмологические проблемы – катаракта, глаукома,
- Дерматиты, сопровождающиеся шелушением, зудом, хроническим воспалением. При длительном облучении высокими дозами на коже могут образовываться язвы. Со временем излучение может приводить к опухолям кожи и лейкозам.
Противопоказания
Рентгеноскопия и рентгенография органов и структур человеческого тела имеет не только множество показаний, но и ряд противопоказаний:
- туберкулез в активной форме;
- эндокринные патологии щитовидной железы;
- общее тяжелое состояние пациента;
- вынашивание ребенка на любом сроке;
- для рентгенографии с применением контраста – период лактации;
- серьезные нарушения в работе сердца и почек;
- внутренние кровотечения;
- индивидуальная непереносимость контрастных препаратов.
Сделать рентген в наше время можно во многих медцентрах. Если рентгенографической или рентгеноскопическое исследование делается на цифровых комплексах, то пациент может рассчитывать на меньшую дозу облучения. Но даже цифровой рентген может считаться безопасным, только в случае не превышения допустимой частоты выполнения процедуры.
Вынужденные диагностические дозы рентген облучения
Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.
Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека
Но все же попытаемся привести усредненные цифры доз, которые может получать пациент
Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:
- цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
- плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
- рентгенография органов грудной полости: 0,15-0,4 мЗв.;
- дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.
Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.
Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.
Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.
Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.
Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.
Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.
Процедура | Эффективная доза облучения | Сопоставимо с природным облучением, полученным за указанный промежуток времени |
Рентгенография грудной клетки | 0,1 мЗв | 10 дней |
Флюорография грудной клетки | 0,3 мЗв | 30 дней |
Компьютерная томография органов брюшной полости и таза | 10 мЗв | 3 года |
Компьютерная томография всего тела | 10 мЗв | 3 года |
Внутривенная пиелография | 3 мЗв | 1 год |
Рентгенография желудка и тонкого кишечника | 8 мЗв | 3 года |
Рентгенография толстого кишечника | 6 мЗв | 2 года |
Рентгенография позвоночника | 1,5 мЗв | 6 месяцев |
Рентгенография костей рук или ног | 0,001 мЗв | менее 1 дня |
Компьютерная томография – голова | 2 мЗв | 8 месяцев |
Компьютерная томография – позвоночник | 6 мЗв | 2 года |
Миелография | 4 мЗв | 16 месяцев |
Компьютерная томография – органы грудной клетки | 7 мЗв | 2 года |
Микционная цистоуретрография | 5-10лет: 1,6 мЗв Грудной ребенок: 0,8 мЗв |
6 месяцев 3 месяца |
Компьютерная томография – череп и околоносовые пазухи | 0,6 мЗв | 2 месяца |
Денситометрия костей (определение плотности) | 0,001 мЗв | менее 1 дня |
Галактография | 0,7 мЗв | 3 месяца |
Гистеросальпингография | 1 мЗв | 4 месяца |
Маммография | 0,7 мЗв | 3 месяца |
Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности
Некоторые люди ошибочно причисляют этот метод к рентгеновским.
Нормативы принятого закона о радиационной безопасности допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.
Облучение при рентгене — риски, дозы, техника безопасности, видео:
Лотин Александр Владимирович, врач-рентгенолог
81,666 просмотров всего, 4 просмотров сегодня
Суть устройства
Рентген, как единица измерения:
Рентген – внесистемная единица экспозиционной дозы облучения рентгеновским или гамма-излучением, определяемая по их ионизирующему действию на сухой атмосферный воздух, названная в честь немецкого физика Вильгельма Конрада Рентгена.
Рентген имеет русское обозначение – Р и международное – R.
Рентген равен экспозиционной дозе фотонного излучения, при которой в 1 см³ воздуха, находящегося при нормальном атмосферном давлении и 0 °C, образуются ионы, несущие заряд, равный 1 единице заряда СГСЭ (≈3,33564⋅10−10 Кл) каждого знака. При дозе рентгеновского или гамма-излучения, равной 1 Р, в 1 см3 воздуха образуется 2,082⋅109 пар ионов.
Единица экспозиционной дозы в Международной системе единиц (СИ) – кулон на килограмм (Кл/кг, C/kg).
1 Кл / кг = 3876 Р.
1 Р = 2,57976⋅10−4 Кл / кг.
В Российской Федерации в соответствии с Постановлением Правительства РФ от 31 октября 2009 г. N 879 “Об утверждении Положения о единицах величин, допускаемых к применению в Российской Федерации” рентген допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения «ядерная физика, медицина».
Международная организация законодательной метрологии (МОЗМ) в своих рекомендациях относит рентген к единицам измерения, «которые могут временно применяться до даты, установленной национальными предписаниями, но которые не должны вводиться, если они не используются».
Рентген в качестве единицы дозы рентгеновского излучения был введён в 1928 году II Международным конгрессом радиологов (г. Стокгольм) в честь В. Рентгена, первооткрывателя рентгеновских лучей.