Виды защиты металла от коррозии: инструкции и советы +видео
Содержание:
- 3 Борьба с коррозией при помощи органических неметаллических покрытий
- Применение жидкой резины для гидроизоляционных работ
- Методы защиты трубопроводных магистралей
- Комбинированная защита от коррозии
- 3 Совместное применение лакокрасочных составов и протекторов
- Способы защиты металла
- Прямые и косвенные проблемы, связанные с коррозией металла
- 1.1. Классификация методов защиты конструкций от коррозии
- Методы борьбы с коррозией
- Защитные покрытия, наносимые промышленным способом.
- Электродренажная защита
- Как обеспечить протекторную защиту
- Защита от ржавчины
3 Борьба с коррозией при помощи органических неметаллических покрытий
Самым распространенным и сравнительно несложным вариантом защиты металлов от ржавления, известным уже очень давно, признается использование лакокрасочных составов. Антикоррозионная обработка материалов такими соединениями характеризуется не только простотой и дешевизной, но еще и следующими положительными свойствами:
- возможностью нанесения покрытий разных цветовых оттенков — что и элегантный облик конструкциям придает, и надежно защищает их от ржавчины;
- элементарностью восстановления защитного слоя в случае его повреждения.
К сожалению, лакокрасочные составы имеют совсем небольшой коэффициент термической стойкости, малую стойкость в воде и относительно низкую механическую прочность. По этой причине в соответствии с существующими СНиП их рекомендовано применять в тех случаях, когда на изделия действует коррозия со скоростью не более 0,05 миллиметров в год, а запланированный срок их эксплуатации не превышает десяти лет.
К составляющим современных лакокрасочных составов относят такие элементы:
- краски: суспензии пигментов с минеральной структурой;
- лаки: растворы (коллоидные) смол и масел в растворителях органического происхождения (защита от коррозии при их применении достигается после полимеризации смолы либо масла или их испарения под влиянием дополнительного катализатора, а также при нагреве);
- искусственные и природные соединения, называемые пленкообразователями (например, олифа – самый, пожалуй, популярный неметаллический «защитник» чугуна и стали);
- эмали: лаковые растворы с комплексом подобранных пигментов в измельченном виде;
- смягчители и разнообразные пластификаторы: адипиновая кислота в виде эфиров, дибутилфтолат, касторовое масло, трикрезилфосфат, каучук, другие элементы, которые увеличивают эластичность защитного слоя;
- этилацетат, толуол, бензин, спирт, ксилол, ацетон и другие (данные компоненты нужны для того, чтобы лакокрасочные составы без проблем наносились на обрабатываемую поверхность);
- инертные наполнители: мельчайшие частицы асбеста, тальк, мел, каолин (они делают антикоррозионные возможности пленок более высокими, а также уменьшают траты других составляющих лакокрасочных покрытий);
- пигменты и краски;
- катализаторы (на языке профессионалов – сиккативы): необходимые для быстрого высыхания защитных составов кобальтовые и магниевые соли жирных органических кислот.
Лакокрасочные соединения выбирают с учетом того, в каких условиях эксплуатируется обрабатываемое изделие. Составы на базе эпоксидных элементов рекомендованы для использования в атмосферах, где постоянно присутствуют испарения хлороформа, двухвалентного хлора, а также для обработки конструкций, находящихся в различных кислотах (азотная, фосфорная, соляная и т. п.).
К кислотам также устойчивы и лакокрасочные составы с полихровинилом. Они, кроме того, применяются для предохранения металла от воздействия масел и щелочей. А вот для защиты конструкций от газов чаще применяются составы на базе полимеров (эпоксидных, фторорганических и иных).
Очень важно при подборе защитного слоя учитывать требования российских СНиП для разных отраслей промышленности. В таких саннормах четко указывается, какие составы и методы защиты от коррозии можно использовать, а от каких лучше отказаться
Например, в СНиП 3.04.03-85 изложены рекомендации по защите различных строительных сооружений:
Применение жидкой резины для гидроизоляционных работ
Методы защиты трубопроводных магистралей
Коррозия трубопроводов возникает в процессе их эксплуатации. Образование ржавчины происходит на трубах внутри и снаружи. C внутренней стороны появляются отложения, и причина этому – химические реакции состава транспортируемой жидкости с металлом. На состояние поверхности оказывает влияние и высокий показатель влажности грунта.
Если своевременно не обеспечить защиту, то возможно возникновение ряда последствий
Что важно:
- плановые осмотры рекомендуется проводить с небольшими временными промежутками.
- проведение ремонтных работ осуществлять периодически, независимо от наличия коррозии.
- приостановление функционирования трубопроводного транспорта неминуемо, так как необходимо производить осмотры и выполнять планово-предупредительные и иные текущие ремонты.
Комбинированная защита от коррозии
Комбинированный метод подразумевает применение нескольких способов борьбы с коррозией. Например, можно использовать пластиковые накладки и нанесение влагоотталкивающих составов. Другие автовладельцы предпочитают применять катодную защиту и специальные грунты.
Любой автомобиль неизбежно подвержен воздействию коррозии, при этом заводское покрытие не всегда является надежным антикоррозийным средством. Чтобы продлить срок службы кузова, его нужно комплексно защищать от разрушения практически с самого начала эксплуатации автомобиля.
3 Совместное применение лакокрасочных составов и протекторов
Нередко защита нефте- либо газопровода, той или иной конструкции из металла от коррозионных проявлений выполняется комбинацией протекторной и лакокрасочной защиты. Последняя по своей сути причисляется к пассивному методу предохранения от коррозии. По-настоящему высоких результатов она не обеспечивает, но зато позволяет в сочетании с протектором:
- нивелировать возможные изъяны покрытия трубопроводов и металлических конструкций, которые возникают по естественным причинам (отслаивание металла, его вспучивание, набухание, появление трещин и так далее), а также при их использовании (нет такого газопровода или танкера, покрытие которого в процессе эксплуатации не претерпевает определенных изменений);
- снизить (иногда весьма существенно) расход достаточно дорогостоящих протекторных материалов, повысив при этом их эксплуатационный срок;
- обеспечить распределение по металлической поверхности трубопроводов защитного тока максимально однородно (равномерно).
Добавим, что лакокрасочные слои во многих случаях довольно-таки сложно нанести на некоторые участки уже функционирующего резервуара, газопровода или водного судна. Тогда лучше, конечно же, не усложнять процесс и применять исключительно протекторы.
Способы защиты металла
Электрохимическая коррозия – одно из основных препятствий, которые встречаются на пути человеческой деятельности. Защита от воздействия разрушительных процессов и их протекания на поверхности конструкций и сооружений – одна из перманентных и насущных задач любого промышленного производства, и любой бытовой деятельности человека.
Разработано несколько способов такой защиты, и все они активно применяются в повседневном цикле жизнедеятельности:
- Электрохимическая защита – электролитическое по принципу работы использование химических закономерностей, защищает металл с помощью анодного, катодного и протекторного принципа.
- Электроискровая обработка с использованием различных установок – бесконтактных, контактных, анодно-механических.
- Электродуговое напыление – основное преимущество в толщине наносимого слоя и относительной дешевизне производимого процесса.
- Эффективная антикоррозийная обработка – удаление загрязнений и очистка обрабатываемой поверхности, с последующим нанесением на поверхность сначала противокоррозионного, а затем и дополнительного защитного слоя.
Все эти способы наработаны в процессе деятельности человека с целью защиты инструментария, средств передвижения и транспортировки на стыке нескольких промышленных отраслей, и с использованием научных достижений.
Электрохимическая коррозия, которая является естественным процессом разрушения поверхности металла под воздействием нейтральных или агрессивных факторов окружающей среды, представляет собой сложную проблему. Убытки от нее терпят и машиностроительные, и транспортные, и промышленные предприятия, средства передвижения. И это проблема, которая требует ежедневного разрешения.
Прямые и косвенные проблемы, связанные с коррозией металла
Основная беда коррозии – постепенное разрушение корродировавших частей конструкций и изделий. При этом степень повреждение по внешнему виду можно оценить не всегда, и потеря прочности становится неожиданной и критичной.
Особенно сильно действует межкристаллическая, то есть проходящая по границам кристаллов, коррозия. Внешне процесс может быть совершенно незаметен, в то время как уровень потери прочности достигает уже 50…60%.
Наименьшее воздействие на прочностные свойства изделий оказывает поверхностное разрушение.
На фото показана часть конструкций башни Шухова в Москве. Поверхностное ржавление существенно снизило конструктивную прочность, но не привело к разрушению сооружения (пока)
Оценить уровень потерь от коррозии металла крайне сложно. Дело даже не в непосредственных убытках от разрушения корродировавших деталей или конструкций, а в простоях техники и сооружений и нарушениях их работоспособности в целом, связанных с коррозионным разрушением отдельных элементов.
1.1. Классификация методов защиты конструкций от коррозии
В
процессе эксплуатации химического
оборудования металлы подвергаются
коррозионному разрушению, что приводит
к его преждевременному выходу из строя.
На скорость коррозии оказывают
существенное влияние материал, из
которого изготовлено оборудование, его
конструкционные особенности, природа
агрессивной среды и условия эксплуатации.
Для повышения долговечности и надежности
вновь проектируемых аппаратов и изделий
необходимо правильно выбрать материал
для изготовления узлов и деталей и
наиболее эффективную защиту от коррозии.
Коррозию
металлов можно замедлить изменением
их стационарных потенциалов,
пассивированием, нанесением защитных
покрытий, снижением концентрации
окислителя в коррозионной среде,
изоляцией поверхности металла от
окислителя и т. д. При разработке методов
защиты от коррозии используют различные
способы снижения скорости коррозии,
которые выбираются в зависимости от
характера коррозии и условий ее
протекания. Выбор того или иного способа
определяется его эффективностью, а
также экономической целесообразностью.
Методы защиты металлов от коррозии
различаются по механизму защитного
действия и по способу применения защиты.
По
механизму защитного действия методы
защиты металлов от электрохимической
коррозии можно разделить на следующие:
—
методы, тормозящие преимущественно
катодный процесс (применение катодных
ингибиторов, уменьшение концентрации
катодных деполяризаторов в растворе,
применение электрохимической катодной
защиты, снижение катодных включений в
сплаве);
—
методы, тормозящие преимущественно
анодный процесс (применение анодных
ингибиторов или пассиваторов, легирование
сплава с целью повышения пассивности,
применение анодной электрохимической
защиты);
—
методы, увеличивающие омическое
сопротивление системы (применение
изоляционных прокладок между катодными
и анодными участками системы);
—
методы, снижающие термодинамическую
нестабильность коррозионной системы
(покрытие активного металла сплошным
слоем термодинамически устойчивого
металла, легирование термодинамически
нестабильного металла значительным
количеством стабильного компонента,
полная изоляция металла от коррозионной
среды);
—
смешанные методы, т.е. методы, тормозящие
одновременно несколько стадий
коррозионного процесса.
Наиболее
эффективным методом защиты металлов
от коррозии обычно является метод,
который преимущественно тормозит
основную контролирующую стадию данного
электрохимического коррозионного
процесса.
Применение
методов защиты, уменьшающих степень
термодинамической неустойчивости
системы, всегда в той или иной степени
будет способствовать понижению скорости
коррозионного процесса.
При
параллельном применении нескольких
методов защиты металлов от коррозии,
как правило, легче достичь более полной
защиты, если все эти методы действуют
преимущественно на основную контролирующую
стадию электрохимического коррозионного
процесса. Например, при уменьшении
коррозии металла добавлением анодных
ингибиторов (пассиваторов) усиление
эффекта защиты будет достигаться также
введением катодных присадок в сплав
или дополнительной анодной поляризацией.
По
способу применения все методы защиты
металлов от коррозии подразделяются
на несколько групп: металлические и
неметаллические покрытия. Роль защиты
от коррозии сводится к повышению
термодинамической устойчивости металла
и к изоляции изделия от коррозионной
среды.
По
методу нанесения металлические защитные
покрытия подразделяются на горячедиффузионные
и гальванические покрытия.
К
горячедиффузионным покрытиям относятся
покрытия, наносимые механо-физическими
методами и основанные на взаимодействии
металла изделия с покрываемым металлом,
который находится в виде расплава, паров
солей или в виде листов.
К
этой группе относятся: горячее,
диффузионное, металлизационное и
плакировочное покрытия.
К
гальваническим покрытиям относятся
покрытия, наносимые электрохимическим
методом.
Защитные
свойства неметаллических покрытий
сводятся к изоляции защищаемого изделия
от коррозионной среды. К неметаллическим
покрытиям относятся:
—
неорганические покрытия (оксидные,
фосфатные, эмалевые покрытия);
—
органические покрытия (лакокрасочные,
битумные покрытия и полимерные пленки).
Методы борьбы с коррозией
Выбор подходящего способа защиты поверхности от образования ржавчины определяется условиями, в которых работает данная деталь или конструкция. Наиболее эффективны следующие методы:
- Нанесение поверхностных атмосферостойких покрытий;
- Поверхностная металлизация;
- Легирование металла элементами, обладающими большей стойкостью к участию в окислительно-восстановительных реакциях;
- Изменение химического состава окружающей среды.
Механические поверхностные покрытия
Поверхностная защита металла может быть выполнена его окрашиванием либо нанесением поверхностных плёнок, по своему составу нейтральных к воздействию кислорода. В быту, а также при обработке сравнительно больших площадей (главным образом, подземных трубопроводов) применяется окраска. Среди наиболее стойких красок – эмали и краски, содержащие алюминий. В первом случае эффект достигается перекрытием доступа кислороду к стальной поверхности, а во втором – нанесением алюминия на поверхность, который, являясь химически инертным металлом, предохраняет сталь от коррозионного разрушения.
Положительными особенностями данного способа защиты являются лёгкость его реализации и сравнительно небольшие финансовые затраты, поскольку процесс достаточно просто механизируется. Вместе с тем долговечность такого способа защиты невелика, поскольку, не обладая большой степенью сродства с основным металлом, такие покрытия через некоторое время начинают механически разрушаться.
Химические поверхностные покрытия
Коррозионная защита в данном случае происходит вследствие образования на поверхности обрабатываемого металла химической плёнки, состоящей из компонентов, стойких к воздействию кислорода, давлений, температур и влажности. Например, углеродистые стали обрабатывают фосфатированием. Процесс может выполняться как в холодном, так и в горячем состоянии, и заключается в формировании на поверхности металла слоя из фосфатных солей марганца и цинка. Аналогом фосфатированию выступает оксалатирование – процесс обработки металла солями щавелевой кислоты. Применением именно таких технологий повышают стойкость металлов от трибохимической коррозии.
Недостатком данных методов является трудоёмкость и сложность их применения, требующая наличия специального оборудования. Кроме того, конечная поверхность изменяет свой цвет, что не всегда приемлемо по эстетическим соображениям.
Легирование и металлизация
В отличие от предыдущих способов, здесь конечным результатом является образование слоя металла, химически инертного к воздействию кислорода. К числу таких металлов относятся те, которые на линии кислородной активности находятся возможно дальше от водорода. По мере возрастания эффективности этот ряд выглядит так: хром→медь→цинк→серебро→алюминий→платина. Различие в технологиях получения таких антикоррозионных слоёв состоит в способе их нанесения. При металлизации на поверхность направляется ионизированный дуговой поток мелкодисперсного напыляемого металла, а легирование реализуется в процессе выплавки металла, как следствие протекания металлургических реакций между основным металлом и вводимыми легирующими добавками.
Изменение состава окружающей среды
В некоторых случаях существенного снижения коррозии удаётся добиться изменением состава атмосферы, в которой работает защищаемая металлоконструкция. Это может быть вакуумирование (для сравнительно небольших объектов), или работа в среде инертных газов (аргон, неон, ксенон). Данный метод весьма эффективен, однако требует дополнительного оборудования — защитных камер, костюмов для обслуживающего персонала и т.д. Используется он главным образом, в научно-исследовательских лабораториях и опытных производствах, где специально поддерживается необходимый микроклимат.
Защитные покрытия, наносимые промышленным способом.
Защитное покрытие выполняется чаще всего в виде пленки (металлической, оксидной, лакокрасочной).
Для создания металлической защитной пленки используют метод гальванизации, нанесения металлов горячим способом или металлизации. Для этого металлическое изделие погружается в емкость с расплавленным защитным материалом (олово, свинец, цинк) с такой температурой, при которой защищаемый металл не плавится. Преимуществом метода металлизации является возможность покрыть защитным слоем уже готовые собранные изделия.
Защитное покрытие также наносят методом диффузии в основной металл другого — алюминия (алитирование или алюминирование), кремния (силицирование), хрома (хромирование), а также создания биметалла способом плакирования.
Еще один способ защиты от коррозии – оксидирование. Поскольку на металле присутствует естественная оксидная пленка, ее делают более прочной, обрабатывая окислителем (растворами кислот или их солей). Одним из видов нанесения такой пленки горячим способом является “воронение” стали.
Также горячим способом выполняется фосфатирование металла (погружение в горячий раствор кислых фосфатов железа или марганца).
Сантехнические изделия (ванны, раковины) покрываются защитным лакокрасочным слоем (эмалируются) в промышленных условиях при очень высоких температурах (до 800°С).
Для защиты металлов во время транспортировки или для хранения металлических конструкций на складах используют жидкие масла или ингибиторы.
Электродренажная защита
Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление.
- Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж — это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света.
- Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод.
- Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении — от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу.
- Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный — к рельсам электрифицированного транспорта, а не к анодному заземлению.
- Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.
Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.
Как обеспечить протекторную защиту
Покрытие труб специальными составами – это задача не только производителя, в процессе эксплуатации конструкции обеспечение защитных свойств тоже должно выполняться. Всего существует несколько способов защиты металла от воздействия агрессивных сред:
- химическая обработка;
- покрытие стенок специальными составами;
- защита от блуждающих токов;
- подведение катода или анода.
О пассивных и активных способах
Антикоррозионная защита – это целый комплекс мероприятий, проводимых предприятиями. Пассивные методы защиты предполагают выполнение следующих работ:
- На стадии монтажа между трубопроводом и грунтом оставляют воздушный зазор, препятствующий попаданию грунтовой воды, в том числе в составе с кислотными и щелочными примесями.
- Покрытие специализированными составами, назначение которых распространяется от негативных воздействий почвы.
- Обработка металла химическими составами, с образованием тонкой пленки.
Активные способы защиты предусматривают использование тока и обмен ионов на основе химических реакций, за счет чего обеспечивается:
- Защита подземных трубопроводов от коррозии созданием электродренажной системы для изоляции трубопроводного транспорта от блуждающих токов.
- Защита анодом от разрушения металлических поверхностей.
- Катодная защита для увеличения сопротивления металлических оснований.
Только с учетом всех способов, препятствующих образованию ржавчины на металле, будет увеличен срок службы конструкций. Антикоррозионная защита трубопроводов должна выполняться комплексно.
На видео: защита трубопроводов и кабельных линий от электрической коррозии.
https://youtube.com/watch?v=l_pU59HIdlo
О достоинствах применения протекторов
Защита труб этим способом производится с добавлением компонента – ингибитора. Это материал с отрицательным электрическим зарядом. Под воздействием воздушных масс он растворяется, а конструкция остается целой и не подвергается ржавлению. Протекторная защита от коррозии применяется для продления срока службы строительных конструкций, систем отопления и водоснабжения, а также магистрального и промыслового трубопроводного транспорта.
Применение электрохимической защиты позволяет устранить причины многих видов коррозии. Такая антикоррозийная защита трубопроводов – неплохое решение даже для предприятий, не имеющих финансовых возможностей по обеспечению полноценной защиты от неконтролируемого процесса.
Для обеспечения грамотного подхода следует:
- Протекторы, изготовленные из алюминия, использовать в средах морских вод и прибрежных шельфах.
- В средах с небольшой электропроводностью использовать магниевые протекторы. Но, опять же, они не подходят для обработки внутреннего покрытия резервуаров, нефтяных отстойников в связи с тем, что обладают достаточно низкой взрывопожароопасностью.
- Использовать протекторы для защиты от сред пресной воды.
- Проекторы, выполненные на основе цинка, являются полностью безопасными, их можно применять на пожаро- и взрывоопасных производствах.
Протекторной антикоррозионной защите можно отнести следующий ряд преимуществ:
- недостаток денежных средств и производственных мощностей у предприятия не будет препятствием ее выполнению;
- возможность защиты конструкций небольших размеров;
- если трубы покрыты теплоизоляционными материалами, то такая защита приемлема.
Используемые материалы и цели применения
Противокоррозионная защита необходима для всех металлических оснований. Данный вид противостояния от ржавчины широко используется для обработки танкеров, так как эти суда наиболее подвержены воздействию воды, имеющей в составе агрессивные компоненты. Даже специальная окраска не справляется с решением этой проблемы.
Наиболее рациональным выбором для покрытия стальных конструкций будет использование протекторов с отрицательным потенциалом. При изготовлении таких устройств применяется магний, цинк или алюминий. Большая разница потенциалов металла и стальных поверхностей способствует увеличению спектра защитного действия, в результате различные виды коррозии устраняются.
Пассивная защита требуется стальным покрытиям и изделиям из металла. Сущность метода заключается в применении гальванических анодов, обеспечивающих противодействие подземных трубопроводов коррозии. При произведении расчета для данной установки, необходимо учитывать следующие показатели:
- параметры силы тока;
- сопротивление от перепадов напряжения;
- характеристики степени защиты, применяемые для 1 км трубопровода;
- показатель расстояния между элементами защиты.
Защита от ржавчины
Защитить металл от коррозии можно. Для этого любое металлическое изделие следует покрыть защитной пленкой, которая будет различаться от структуры и химического состава металла. Существует много способов защиты металла от коррозии.
В быту есть понятие «изделие из нержавейки». Это значит, что используется легированная сталь. Как покрасить лакированную мебель в белый цвет в домашних условиях?
Долгое время нечувствительными к атмосферной коррозии могут оставаться легированные стали с добавлением хрома, меди, которые используют в строительстве. Чем меньше содержание примесей в стали и выше ее однородность, тем менее она подвержена коррозии.
Это интересно: Цинкарь: популярный но не самый лучший преобразователь ржавчины